Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.929
Filtrar
1.
J Hazard Mater ; 470: 134169, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565022

RESUMEN

Microplastic (MP) pollution poses a significant threat to marine ecosystem and seafood safety. However, comprehensive and comparable assessments of MP profiles and their ecological and health in Chinese farming oysters are lacking. This study utilized laser infrared imaging spectrometer (LDIR) to quantify MPs in oysters and its farming seawater at 18 sites along Chinese coastlines. Results revealed a total of 3492 MPs in farmed oysters and seawater, representing 34 MP types, with 20-100 µm MP fragments being the dominant. Polyurethane (PU) emerged as the predominant MP type in oysters, while polysulfones were more commonly detected in seawater. Notably, oysters from the Bohai Sea exhibited a higher abundance of MPs (13.62 ± 2.02 items/g) and estimated daily microplastic intake (EDI, 2.14 ± 0.26 items/g/kg·bw/day), indicating a greater potential health risk in the area. Meanwhile, seawater from the Yellow Sea displayed a higher level (193.0 ± 110.7 items/L), indicating a greater ecological risk in this region. Given the pervasiveness and abundance of PU and its high correlation with other MP types, we proposed PU as a promising indicator for monitoring and assessing the risk MP pollution in mariculture in China. These findings provide valuable insights into the extent and characteristics of MP pollution in farmed oysters and seawater in China.


Asunto(s)
Acuicultura , Monitoreo del Ambiente , Microplásticos , Ostreidae , Agua de Mar , Contaminantes Químicos del Agua , Animales , Agua de Mar/análisis , China , Contaminantes Químicos del Agua/análisis , Ostreidae/química , Microplásticos/análisis , Medición de Riesgo
2.
Sci Total Environ ; 927: 172145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569974

RESUMEN

Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 µg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 µg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.


Asunto(s)
Organismos Acuáticos , Cobre , Monitoreo del Ambiente , Océanos y Mares , Agua de Mar , Contaminantes Químicos del Agua , Cobre/toxicidad , Agua de Mar/química , Organismos Acuáticos/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Concentración de Iones de Hidrógeno , China , Cambio Climático , Calentamiento Global , Animales , Acidificación de los Océanos
3.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664737

RESUMEN

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Asunto(s)
Bacterias , Metagenómica , Nutrientes , Peptidoglicano , Fitoplancton , Polisacáridos , Agua de Mar , Polisacáridos/metabolismo , Agua de Mar/microbiología , Fitoplancton/metabolismo , Fitoplancton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota
4.
BMC Biol ; 22(1): 87, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637780

RESUMEN

BACKGROUND: Cyprinidae, the largest fish family, encompasses approximately 367 genera and 3006 species. While they exhibit remarkable adaptability to diverse aquatic environments, it is exceptionally rare to find them in seawater, with the Far Eastern daces being of few exceptions. Therefore, the Far Eastern daces serve as a valuable model for studying the genetic mechanisms underlying seawater adaptation in Cyprinidae. RESULTS: Here, we sequenced the chromosome-level genomes of two Far Eastern daces (Pseudaspius brandtii and P. hakonensis), the two known cyprinid fishes found in seawater, and performed comparative genomic analyses to investigate their genetic mechanism of seawater adaptation. Demographic history reconstruction of the two species reveals that their population dynamics are correlated with the glacial-interglacial cycles and sea level changes. Genomic analyses identified Pseudaspius-specific genetic innovations related to seawater adaptation, including positively selected genes, rapidly evolving genes, and conserved non-coding elements (CNEs). Functional assays of Pseudaspius-specific variants of the prolactin (prl) gene showed enhanced cell adaptation to greater osmolarity. Functional assays of Pseudaspius specific CNEs near atg7 and usp45 genes suggest that they exhibit higher promoter activity and significantly induced at high osmolarity. CONCLUSIONS: Our results reveal the genome-wide evidence for the evolutionary adaptation of cyprinid fishes to seawater, offering valuable insights into the molecular mechanisms supporting the survival of migratory fish in marine environments. These findings are significant as they contribute to our understanding of how cyprinid fishes navigate and thrive in diverse aquatic habitats, providing useful implications for the conservation and management of marine ecosystems.


Asunto(s)
Cyprinidae , Ecosistema , Animales , Filogenia , Cyprinidae/genética , Genómica , Agua de Mar , Adaptación Fisiológica/genética
5.
Science ; 384(6692): 217-222, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603509

RESUMEN

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."


Asunto(s)
Cianobacterias , Haptophyta , Mitocondrias , Fijación del Nitrógeno , Nitrógeno , Cianobacterias/genética , Cianobacterias/metabolismo , Haptophyta/microbiología , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Agua de Mar/microbiología , Simbiosis , Mitocondrias/metabolismo , Cloroplastos/metabolismo
6.
Lancet Planet Health ; 8 Suppl 1: S1, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38632904

RESUMEN

BACKGROUND: Affective processes play an important role in physical and mental health and in adaptation responses to the global environmental crisis. Eco-emotions-emotions that are substantially associated with the environment and anthropogenic changes happening within it-are complex and culturally varied. Despite the disproportionate impact of the global environmental crisis on low-income and middle-income countries, most psychological research to date has been conducted in high-income countries and has focused on climate change and negative climate emotions (eg, climate anxiety). The absence of diverse, globally representative evidence about emotions associated with the global environmental crisis beyond climate change hinders evidence-based action on psychological adaptation and the development of contextually and culturally appropriate coping strategies toward the wider range of negative anthropogenic effects. To account for this wider range of anthropogenic effects, we previously introduced an eco-emotions framework built on the planetary boundaries concept. We aimed to apply this framework to the current research on eco-emotional responses to identify remaining gaps that hinder evidence-based action. METHODS: We conducted a literature review of peer-reviewed studies assessing core affect (ie, emotional valence and arousal) and emotions with emphasis on study populations from low-income and middle-income countries and on the eight non-climate change planetary boundaries (biodiversity loss, freshwater use, ocean acidification, chemical pollution, air pollution, land system change, ozone depletion, and nitrogen and phosphorus perturbation). We searched Web of Science from database inception to Oct 31, 2023, for observational empirical studies of adults, using planetary boundary-specific (eg, freshwater use) or wider, newer, or overarching emotional concept (eg, solastalgia, environmental change) search terms. FINDINGS: In contrast to previous climate emotions work, our preliminary results of 135 peer reviewed studies identified a significant body of literature beyond climate change concerning emotional responses to the planetary boundaries of biodiversity loss, freshwater scarcity, and chemical pollution as well as emerging evidence of emotional responses to the other five planetary boundaries. INTERPRETATION: We found that the spectrum of eco-emotional responses ranged from being specific to a single planetary boundary to encompassing all planetary boundaries. Our findings underscore the importance of and urgent need for more holistic and diverse psychological intervention strategies targeting the wider range of anthropogenic effects during the rapidly intensifying global environmental crisis. FUNDING: Emmett Interdisciplinary Program in Environment and Resources; McGee and Levorsen Research Grant Program; and Center on Philanthropy and Civil Society at Stanford University.


Asunto(s)
Contaminación Ambiental , Agua de Mar , Adulto , Humanos , Concentración de Iones de Hidrógeno , Emociones , Biodiversidad
7.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567993

RESUMEN

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Agua de Mar/análisis , Agua de Mar/química , Isótopos/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 58(15): 6487-6498, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38579165

RESUMEN

The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.


Asunto(s)
Mercurio , Animales , Mercurio/toxicidad , Agua de Mar , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Metales
9.
Water Sci Technol ; 89(7): 1613-1629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619893

RESUMEN

This study develops a novel double-loop contraction and C value sorting selection-based shrinkage frog-leaping algorithm (double-contractive cognitive random field [DC-CRF]) to mitigate the interference of complex salts and ions in seawater on the ultraviolet-visible (UV-Vis) absorbance spectra for chemical oxygen demand (COD) quantification. The key innovations of DC-CRF are introducing variable importance evaluation via C value to guide wavelength selection and accelerate convergence; a double-loop structure integrating random frog (RF) leaping and contraction attenuation to dynamically balance convergence speed and efficiency. Utilizing seawater samples from Jiaozhou Bay, DC-CRF-partial least squares regression (PLSR) reduced the input variables by 97.5% after 1,600 iterations relative to full-spectrum PLSR, RF-PLSR, and CRF-PLSR. It achieved a test R2 of 0.943 and root mean square error of 1.603, markedly improving prediction accuracy and efficiency. This work demonstrates the efficacy of DC-CRF-PLSR in enhancing UV-Vis spectroscopy for rapid COD analysis in intricate seawater matrices, providing an efficient solution for optimizing seawater spectra.


Asunto(s)
Algoritmos , Agua de Mar , Análisis de la Demanda Biológica de Oxígeno , Análisis Espectral , Análisis de los Mínimos Cuadrados
10.
Mar Environ Res ; 197: 106481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593647

RESUMEN

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Animales , Agua de Mar/química , Azufre/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Fitoplancton , China , Zooplancton/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38568051

RESUMEN

Two novel Gram-stain-negative, aerobic, non-motile and rod-shaped bacteria, designated as WL0004T and XHP0148T, were isolated from seawater samples collected from the coastal areas of Nantong and Lianyungang, PR China, respectively. Both strains were found to grow at 10-42 °C (optimum, 37 °C) and with 2.0-5.0 % (w/v) NaCl (optimum, 3.0 %). Strain WL0004T grew at pH 6.0-9.0 (optimum, pH 7.0-8.0), while XHP0148T grew at pH 6.0-10.0 (optimum, pH 7.0-8.0). The major cellular fatty acids (>10 %) of both strains included summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). In addition, strain WL0004T contained 11-methyl C18 : 1 ω7c and strain XHP0148T contained C12 : 0 3-OH. The respiratory quinone of both strains was ubiquinone-10. The G+C content of genomic DNA of strains WL0004T and XHP0148T were 62.5 and 63.0 mol%, respectively. Strains WL0004T and XHP0148T showed the highest 16S rRNA gene sequence similarity to Ruegeria pomeroyi DSS-3T (99.4 and 99.0 %, respectively), and the 16S rRNA gene-based phylogenetic analysis indicated that the two strains were closely related to members of the genus Ruegeria. The average nucleotide identity and digital DNA-DNA hybridization values among the two strains and type strains of the genus Ruegeria were all below 95 and 70 %, respectively, and the phylogenetic tree reconstructed from the bac120 gene set indicated that the two strains are distinct from each other and the members of the genus Ruegeria. Based on this phenotypic and genotypic characterization, strains WL0004T (=MCCC 1K07523T=JCM 35565T=GDMCC 1.3083T) and XHP0148T (=MCCC 1K07543T=JCM 35569T=GDMCC 1.3089T) should be recognized as representing two novel species of the genus Ruegeria and the names Ruegeria marisflavi sp. nov. and Ruegeria aquimaris sp. nov. are proposed, respectively.


Asunto(s)
Ácidos Grasos , Agua de Mar , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
12.
Artículo en Inglés | MEDLINE | ID: mdl-38568198

RESUMEN

Two Gram-negative, non-spore-forming, non-motile, non-flagellated bacteria, designated strains D6T and DH64T, were isolated from surface water of the Pacific Ocean. For strain D6T, growth occurred at 10-40 °C, pH 5.5-9.0 and in the presence of 0-8.0 % NaCl (w/v). For strain DH64T, growth occurred at 10-40 °C, pH 5.5-8.5 and in the presence of 0.5-8.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains D6T and DH64T both belonged to the genera Flagellimonas, with the highest sequence identities to Flagellimonas taeanensis JCM 17757T (98.2 %) and Flagellimonas marinaquae JCM 11811T (98.6 %), respectively. The 16S rRNA gene sequence identity between strains D6T and DH64T was 95.9 %. The average amino acid identity and digital DNA-DNA hybridization values between the two strains and the nearest phylogenetic neighbours were 66.7-93.3 % and 16.1-38.5 %, respectively. The major respiratory quinone of both strains was menaquinone-6. The major polar lipid was phosphatidylethanolamine. The major fatty acids were identified similarly as iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH. The genomic G+C contents of strains D6T and DH64T were determined to be 45.5 and 42.6 mol%, respectively. The combined genotypic and phenotypic data show that the strains represent two novel species within genera Flagellimonas, for which the names Flagellimonas baculiformis sp. nov. and Flagellimonas crocea sp. nov. are proposed, with type strains D6T (=MCCC M28982T=KCTC 92604T) and DH64T (=MCCC M28986T=KCTC 92975T).


Asunto(s)
Ácidos Grasos , Cloruro de Sodio , Océano Pacífico , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Agua de Mar
13.
PLoS One ; 19(4): e0298139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564528

RESUMEN

Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Agua , ARN Ribosómico 16S/genética , Filogenia , Bacterias/genética , Océanos y Mares , Alphaproteobacteria/genética , Gammaproteobacteria/genética , Agua de Mar/microbiología
14.
Nat Commun ; 15(1): 2885, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570485

RESUMEN

Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.


Asunto(s)
Ecosistema , Agua de Mar , Animales , Agua de Mar/química , Invertebrados/fisiología , Cambio Climático , Organismos Acuáticos , Concentración de Iones de Hidrógeno , Océanos y Mares , Calentamiento Global
15.
Antonie Van Leeuwenhoek ; 117(1): 70, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658407

RESUMEN

The genus Jannaschia is one of the representatives of aerobic anoxygenic phototrophic (AAP) bacteria, which is a strictly aerobic bacterium, producing a photosynthetic pigment bacteriochlorophyll (BChl) a. However, a part of the genus Jannaschia members have not been confirmed the photosynthetic ability. The partly presence of the ability in the genus Jannaschia could suggest the complexity of evolutionary history for anoxygenic photosynthesis in the genus, which is expected as gene loss and/or horizontal gene transfer. Here a novel AAP bacterium designated as strain AI_62T (= DSM 115720 T = NBRC 115938 T), was isolated from coastal seawater around a fish farm in the Uwa Sea, Japan. Its closest relatives were identified as Jannaschia seohaensis SMK-146 T (95.6% identity) and J. formosa 12N15T (94.6% identity), which have been reported to produce BChl a. The genomic characteristic of strain AI_62T clearly showed the possession of the anoxygenic photosynthesis related gene sets. This could be a useful model organism to approach the evolutionary mystery of anoxygenic photosynthesis in the genus Jannaschia. Based on a comprehensive consideration of both phylogenetic and phenotypic characteristics, we propose the classification of a novel species within the genus Jannaschia, designated as Jannaschia pagri sp. nov. The type strain for this newly proposed species is AI_62T (= DSM 115720 T = NBRC 115938 T).


Asunto(s)
Filogenia , Agua de Mar , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , Japón , Acuicultura , ADN Bacteriano/genética , Fotosíntesis , Técnicas de Tipificación Bacteriana , Aerobiosis , Animales , Bacterioclorofila A/análisis
16.
Environ Sci Technol ; 58(14): 6204-6214, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557085

RESUMEN

Marine permeable sediments are important sites for organic matter turnover in the coastal ocean. However, little is known about their role in trapping dissolved organic matter (DOM). Here, we examined DOM abundance and molecular compositions (9804 formulas identified) in subtidal permeable sediments along a near- to offshore gradient in the German North Sea. With the salinity increasing from 30.1 to 34.6 PSU, the DOM composition in bottom water shifts from relatively higher abundances of aromatic compounds to more highly unsaturated compounds. In the bulk sediment, DOM leached by ultrapure water (UPW) from the solid phase is 54 ± 20 times more abundant than DOM in porewater, with higher H/C ratios and a more terrigenous signature. With 0.5 M HCl, the amount of leached DOM (enriched in aromatic and oxygen-rich compounds) is doubled compared to UPW, mainly due to the dissolution of poorly crystalline Fe phases (e.g., ferrihydrite and Fe monosulfides). This suggests that poorly crystalline Fe phases promote DOM retention in permeable sediments, preferentially terrigenous, and aromatic fractions. Given the intense filtration of seawater through the permeable sediments, we posit that Fe can serve as an important intermediate storage for terrigenous organic matter and potentially accelerate organic matter burial in the coastal ocean.


Asunto(s)
Materia Orgánica Disuelta , Hierro , Hierro/química , Agua de Mar/química , Agua , Compuestos Orgánicos
17.
J Exp Biol ; 227(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563292

RESUMEN

Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Respuesta al Choque Térmico , Simbiosis , Antozoos/fisiología , Antozoos/metabolismo , Animales , Dinoflagelados/fisiología , Dinoflagelados/metabolismo , Respuesta al Choque Térmico/fisiología , Nutrientes/metabolismo , Nitrógeno/metabolismo , Compuestos de Nitrógeno/metabolismo , Agua de Mar/química , Calor , Aminoácidos/metabolismo
18.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646770

RESUMEN

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Asunto(s)
Diatomeas , Dinoflagelados , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Agua de Mar , China , Dinoflagelados/crecimiento & desarrollo , Agua de Mar/análisis , Agua de Mar/química , Diatomeas/crecimiento & desarrollo , Océanos y Mares , Fósforo/análisis , Nitrógeno/análisis , Estaciones del Año
19.
Sci Rep ; 14(1): 8495, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605161

RESUMEN

A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Receptor Toll-Like 4 , Calentamiento Global , Lipopolisacáridos , FN-kappa B , Agua de Mar , Temperatura , Arrecifes de Coral
20.
Microbiome ; 12(1): 75, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627822

RESUMEN

BACKGROUND: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. RESULTS: We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. CONCLUSIONS: We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Agua de Mar , Antozoos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...